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Abstraet--The evolution of homogeneous grid-generated turbulence in stratified fluid is investigated ana- 
lytically. A small parameter decomposition on inverse Froude number is applied to the theory of nearly 
homogeneous turbulence developed earlier in refs. [1] and [2]. Applying the multiple scale method we 
calculate the frequency and amplitude of internal gravity waves and formulate differential system describing 
the wave-averaged behaviour of turbulence characteristics. The comparison with the numerical results 
published in [2] and with known experimental data shows a very good agreement as to internal waves as 
to small scale turbulence in collapsed state. The long-term turbulence evolution in weakly stratified media 
can be regarded as a singular perturbation problem permitting us to gain an insight into the interaction 

between gravity waves and active turbulence. ~' 1997 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Turbulence in stably stratified fluid has been a subject 
of intensive investigation over the last two decades. 
The interest in the problem was stimulated by the 
practical importance of mixing processes in the ocean 
and the atmosphere. This problem has been inves- 
tigated experimentally in laboratory conditions (in 
salt water tanks and wind tunnels) and in natural 
observations. Numerical modelling has been made on 
the basis of Navier-Stokes equations (direct numeri- 
cal simulation) or on the basis of second order models. 

Turbulence evolution in a stratified flow differs 
essentially from one in a non-stratified fluid, due to 
the presence of additional buoyancy mechanism of 
transfer, production and dissipation of turbulence 
kinetic energy (TKE). In a stably stratified fluid small 
scale turbulence can fully or partially turn into 
internal gravity waves. The separation of the active 
turbulence and the wave motion in oceanic flows is of 
importance for the interpretation of oceanographic 
experiments and the determination of such practical 
matters as vertical flux of mass and mixing efficiency. 

The main effect of gravity on stratified flow is in 
shrinking the turbulent wake vertically; in view of 
this, viscous forces suppress the turbulent motion 
more rapidly. As a consequence, turbulence goes into 
a so called 'collapsed state' [3] in which TKE is con- 
verted into the potential energy of density fluctu- 
ations, P = ½p2/N2g2/p, where N = (g/fi dp/dx2) 1/2 is 
the Brunt-V~iis~ilii frequency, that is the frequency of 
internal waves in a stable atmosphere. The onset of 
fossilization is detected in experiments as a sharp 
decrease of the rate of TKE decay and a stop in the 
growth rate of mixing layer thickness [4, 5]. A review 

of a considerable number of papers dealing with the 
collapsed state was contributed by Hopfinger [6]. Cri- 
teria of the collapse onset was also considered in detail 
in refs. [4, 7] and in works of the Van Atta group [5, 
8, 9]. 

Collapsed state has been intensively studied in shear 
free and shear flows. The mean shear was not found 
to be of essential importance provided that the global 
Richardson number is less than 0.1, 

Ap 6 
Ri. = g  

P (AU) 2 

where Ap and A U are density and velocity differences 
across the layer, 6 the layer thickness, ~ the mean 
density. In oceanic observations the shear is usually 
small, so the results of laboratory experiments and of 
direct numerical simulation (DNS) appear to have a 
strong relationship to the situation which really exists 
in the atmosphere and in the ocean [6]. 

The turbulence structure in the collapsed state (two- 
dimensional turbulence, internal waves or both) has 
also been investigated by many authors. While the 
mean effect of buoyancy was found to suppress the 
vertical velocity fluctuations and in some earlier pap- 
ers collapse was treated as a full abrupt stop of vertical 
fluctuations, later in numerical studies [10-14] and in 
laboratory experiments [8, 9] it was detected that the 
transition to 2-D turbulence has an oscillatory charac- 
ter. It was pointed out that only a small fraction of 
TKE can be converted into the potential energy of 
density fluctuations irreversibly [6]. Such a situation 
appears to take place in the ocean where the efficiency 
of vertical mixing even at very long evolution time 
is essentially higher than that due to the molecular 
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NOMENCLATURE 

E = ~ / U  2 dimensionless kinetic energy 
F = N M / U  inverse Froude number 
M cell size of a grid 
N = (9 dp/p dx2) 1/2 Brunt-V~iis~ila number 
Q = ( - ~ 2 p / ( U M d ~ / d x 2 )  dimensionless 

turbulent transverse mass flux 
Rz2 = u~/U 2 vertical component of velocity 

pulsation tensor 
R;, = (5ETuRe) 1/2 turbulent Reynolds 

number 
Re = UM/v Reynolds number 
Tp = (pZU)/(epM) time scale of density field 
Tu = (~U)/(e,M) time scale of velocity field 
U flow velocity 

m 

u~ doubled turbulence kinetic energy. 

Greek symbols 
e = F 2 small parameter 
ep dissipation rate of density fluctuations 
eu dissipation rate of velocity fluctuations 
~r molecular Prandtl number 

= z*U/M dimensionless time 
f = , ~ r  = Nz*, t = eTp fast and slow time 

variables 
z* dimensionless time 
® = p2/(Md~/dx2) 2 squared density 

fluctuation. 

diffusion. Stratification primarily influences dis- 
turbances with large scales, while small-scale fluc- 
tuations and turbulent mixing at small scales are still 
possible at any evolution time. 

Riley [11] supposed that 2-D waves and quasi 2-D 
turbulent motion coexist at different scales. Lilly [12] 
developed this idea in more detail with the assumption 
that spatial scales in stratified flow are approximately 
isotropic, but velocity scales essentially differ. This led 
him to introduce two different time scales: one for 
internal waves, N -~, and another for turbulent 
motion, L/u', where L is integral length scale and u' is 
r.m.s, velocity. As a results two various sets of equa- 
tions were obtained. The idea of a two-scale character 
of stratified flow was firmly confirmed by experimental 
investigation, see ref. [9]. Numerical calculations in 
ref. [14] for conditions of experiments in ref. [9] also 
showed the presence of oscillations in kinetic and 
potential energies and also in various length scales. 

In the cited works the frequency of internal waves 
was found to be approximately two-fold greater than 
the Brunt-V~iisal~i number N. The time scale N-  1 rep- 
resents the upper limit for the period of internal waves 
generated in a stratified fluid by buoyancy effects. It 
lets us generalize many of the buoyancy driven fea- 
tures of the flow. For instance, the time of the collapse 
onset in the most of laboratory experiments and DNS 
runs was within an interval Nz* = 1.5 2.5, the period 
of oscillations was in interval Nr* = 3-4. However, it 
was not possible to say anything about distribution of 
energy between internal waves and active small-scale 
turbulence [6]. 

Another time scale in the given problem, is deter- 
mined by the ratio L/U, where L is some internal 
length scale in the flow (grid size M in experiments 
with grid-generated turbulence, or integral length 
scale L in DNS calculations) and U is the main flow 
velocity. We intend to consider this two-scale motion 
with small parameter methods, mainly with the 

method of multiple scales. In the majority of published 
experiments, in the oceanic and atmospheric obser- 
vations the inverse Froude number F = N M / U ,  rep- 
resenting the ratio of mass elevating forces to inertia 
forces, is rather small (of the order 10-2). So, the 
equations describing turbulence evolution in stratified 
media contain the perfect small parameter g = F 2 and 
can be effectively solved by means of small parameter 
decomposition. The use of a multiple scale method 
lets us obtain the equations describing short and long- 
time motion, combined by their internal link. The 
period and amplitude of internal wave motion tog- 
ether with the wave averaged behavior of the functions 
can be found in this way. The analytical study should 
explain some earlier detected laws, describing the 
dependence of a solution on Prandtl and Froude num- 
bers and make conclusions about the rate and mech- 
anism of stratified turbulence decay. 

In the section we shall mainly concern ourselves 
with the parameters of wave motion. Subsequent sec- 
tions will describe asymptotic regimes of short and 
long evolution time. Finally, we shall describe some 
features of turbulence evolution at not small Froude 
numbers, F, and the influence of the initial condition. 

2.GOVERNING EQUATIONS 

The evolution of grid-generated turbulence in uni- 
form horizontal flow in the presence of vertical density 
gradient is considered. Before starting the description 
of the method it is necessary to say something about 
the nearly homogeneous turbulence model, we use 
the one described in ref. [1]. Nearly homogeneous 
turbulence is the simplest form of non-homogeneous 
turbulence driven by constant gradients of mean vel- 
ocity and scalar field [15]. One of the attractive fea- 
tures of nearly homogeneous turbulence theory is that 
most of the existing experimental data refer to con- 
stant gradients [7-9, 16]. The second order closure 
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model [1], having been applied to homogeneous strati- 
fied flow [2], showed not a bad agreement with exper- 
iments in a salt-water tank [9] and in air wind tunnel 
[8]. 

In spite of a great importance of experimental and 
DNS methods for the understanding of physical 
phenomena in a stratified fluid, their application for 
long evolution time is rather hard. In view of the 
inevitable computing difficulties an application of 
DNS is now limited by Reynolds and molecular 
Prandtl numbers and short time intervals [17]. Exper- 
imental methods either do not give the possibility of 
studying the turbulence decay during very long time 
intervals, taking into account tiny magnitudes of 
values being measured and the necessity for having a 
very large experimental installation. The theory of 
nearly homogeneous turbulence can be a proper alter- 
nate method for very long time intervals, which is 
impossible for other methods of research. 

In the theory of ref. [1] using the expression 
obtained for the two-point correlation u~uj and u~uju~ 
it was shown that the Reynolds stress dissipation ten- 
sor can be parametrized in the form 
e u = ½e,[dK,,+(l-d)6u] where e, is the dissipation 
rate of TKE, K u = u~u#u~,,, the anisotropy coefficient, 
6 u the Kroneker symbol, and d is a certain normalized 
function of turbulence Reynolds number influence 
(d = 0 at R~ >> 1 and d = 1 at R~, << 1). By comparing 
the above expression for e u to the known Rotta's 
approximation [ 18] for the E u tensor, 
e u = C, v/u~ujL 2 + Cuff,/L, the parameter d(R~) can be 
found in the form 

a = 1-2/(I + ~ )  

where 6, = 20G/C  is some unknown constant. This 
constant was estimated to be equal to 2800 from Shu- 
man and Petterson's work [19]. Other unknown terms 
of the model [1] were also parametrized using the 
d(R~) function to satisfy limiting conditions of strong 
(R~ >> 1) and weak (R~ << t) turbulence. 

The model of ref. [1] for uniform horizontal flow 
with constant vertical density gradient incorporates 
differential equations for doubled TKE, ~ ,  intensity 
of scalar fluctuation, p2, vertical component of Rey- 
nolds tensor, u2u2, vertical mass flux, pu2, dissipation 
rates of TKE, e,, and of scalar fluctuation intensity, 
/;p 

,d [(.+9 
2 dr *(u2u2) = - -  ~ ( l  

I I 4 

1 d .~- 
~ d ; , (u i )  = - b - e .  

d~. = F,**e.- 2a2 Rb 
% dr~ 

(1) 

dO 
- -  u2 u2 dx~ - [(1 - d) 

x +IOKR + a i R  

1 d ~- dO 
a~,(p ) = - p~2 dx~ - ~' 

dep /F*, p* ** ) % +  dO 

where F**, F~p* , F~p2* * are the interaction functions 
of the turbulent vortices of different scales for the 
isotropic velocity and scalar fields parametrized in ref. 
[1] as 

F** 11 13 - 3 ~d, b-~p* = ~ ( l - d ) ,  k'~p* = 2 + ~ d ,  

b = (puz/O)g is the buoyancy vector (positive if 
upward), K =  u2u2/u~f is the vertical anisotropy 
coefficient, z, = ~ /e ,  the velocity field time scale, 
% = p2/% the scalar field time scale, R = z,/% the time 
scale ratio, ~1 = 2d(aoo + 3/5)/Roo, c~2 = ~a/(1 + a) are 
coefficients dependent on d and a, aoo and Roo are the 
asymptotic values of turbulent Prandtl and of time 
scale ratio in passive scalar case (F = 0) at r ~ oo 
taken from the work in ref. [20] 

.F ( 2,, 13, l - ,  (2) 

( T+o  21 

×ii_2(2  y'2 - ,  

\ ~ j  + ~" 21  • 
(3) 

In dimensionless form the system being analyzed 
takes the form 

1 4 T .  21E 
+ ~ + ~ Q ~ F  I T  " 

dE [ T u 2 I E  
de- 2 l+Q F 

d ~ -  (F*.*-2)--2 l -  \TT~) 

3_I± T-IF=Q 
VR~ T~I E 

d~ F ~ ® 
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dO 

dr 

dL 
d'c 

- 211 Tp]® 

- (Fo** - -  2) + F * *  T,,  
T. 

(4) 

3. THE CHOICE OF EXPANSION METHOD 

Using a small parameter method we should expand 
the functions in system (1) in power series of e, com- 
bining the terms with identical exponents e in separate 
subsystems. It is valid if the identical order of mag- 
nitude in subsystems is not  infringed by any other 
factors. In our case, we have to mention some of such 
factors in system (1). The time scales T,, and Tp grow 
near-linearly with ~, for a strong turbulence mode 
(R~ >> 1) the parameter d tends to zero ; oppositely 
for a weak turbulence mode, the parameter d' = 1 - d  
tends to zero. So, it is hardly possible to obtain an 
approximate solution uniformly valid for all r and R~. 
A set of  partial cases will be considered instead. 

A direct expansion on a small parameter e in (1) is 
singular for r > 1 in asymptotic expansions sense [21], 
because it contains positive exponents of z enlarging 
with the order of approach. Mathematically, this 
singularity is caused by differential order lowering in 
equation (1), as at r >> 1 the differential equation for 
the turbulent mass flow degenerates into an algebraic 
form. To obtain an asymptotic expansion, valid at 
long r, it is necessary to replace the variables, using for 
this purpose the small parameter e in new variables. 

Existing information indicates from which class of 
functions an approximate solution should be con- 
structed. The results of ref. [2] (and of many works 
mentioned in the Introduction) showed that the func- 
tions in equation (1) can be represented as mon- 
otonous dependencies with oscillations imposed. Pro- 
ceeding from the published numerical solutions we 
shall seek an approximate analytical solution for any 
of the functions f i n  equation (1) as a sum of harmonic 
function with varying amplitude f a n d  some smooth 
additive J~ i.e. f = f + f = f + f ' f " ,  where j~ is the 
amplitude a n d f '  is the harmonic function. 

We shall further subdivide our analysis into three 
time spans, near, distant and final. Generally, the most 
important  is the distant time span, which can be 
defined by the condit ion Tp >> 1. The near time inter- 
val (Tp ~ 1) is rather small and generally speaking is 
absent if initial conditions determine a large size of T~, 
(practically T, > 10). The final time span is a partial 

and more simple case of the distant one. We shall 
consider asymptotic modes of near and final time 
spans in the next sections of this paper. 

4. ANALYSIS OF DISTANT TIME SPAN 

Let us introduce the following set of  variables and 
coordinates 

q = eTpQ/E, ,9 = s®/E, K =  R22/E, 

R =  Tu/Tp, t = ~Tp, f = ez = Nr* 

where e = d ' 2 =  F, T, and Tp are non-dimensional  
time scales for velocity and scalar fields, ,9 represents 
the relation of potential energy e® to the kinetic 
energy E, the functions t and ~ = Nr* are used further 
as independent variables. In these designations the 
original system of equations (4) can be written more 
briefly as 

dK - 7 d ' ( K -  1/3) 
t ~ = ~ R + 2~q(K--4/5) 

dR 4 
t ~ r  = s ~ d ( 1 - R / R o ~ ) - 2 e q ( 1 - ~ 2 R ) R  

d,9 
t d~r = 2~ ( 1 - 1 ) O +  2~q(l +,9) 

t~r  = t Z A t + e q [ l ( 2 - d ) - l O d ' K - o q + p l + 2 e q Z  

dt 

dr - ~p 

dE 2~E 
t dr - R 2eqE (5) 

where p = 4d/5Roo + 5d'/3R and 

A 1 = K+,9[d(K-  1/3) - 2/3]. (6) 

At d = const. (at asymptotically large Ra >> 1 and 
small Ra << 1 turbulent Reynolds numbers) the equa- 
tion for E in equation (5) can be solved separately 
from the other equations. At turbulent Reynolds num- 
bers, not  satisfying these two extreme cases it is more 
convenient to replace the equation for E in equation 
(5) with the equation for d, which is the equation 
for the turbulent Reynolds number,  R~, and can be 
deduced from equations for E and T, in equation (5) 
a s  

U;4 ) 
t ~ -  r = ep] 2(2-c~2R)q (7) 

where pt is a logarithmic derivative of d with respect 
to R~. Its calculation gives 

d(d) R~ = (1/(1 +O./R~) '/2 -- 1) 
P'  -- d(R~) 

x (1 + (1 + ~ / R ~ ) ' / 2 ) - '  = _ 
d d  t 

(1 +d)"  



Homogeneous turbulence evolution in stably stratified flow--I 1955 

The density field time scale function, Tp(r), grows 
monotonously with ~ and can be used as an inde- 
pendent variable, replacing r in equations (5) and (7). 
We shall, however, use the independent variable Tp 
instead of z, but alongside with ~ (strictly speaking, 
alongside with ~), applying a known method of mul- 
tiple scales [21], which expands the derivatives. We 
shall seek the desired functions in the following form 

K =/~(t) + d~(t, "~) + O(E2), 

R = t~(t) +eta(t, 0 + O(e 2) 

o = g(t)+,:g(t,~)+o(~2), 
d = d(t) + ed(t, q) + O(e 2) 

q = ~[(t) + eq(t, q) + O(e2). (8) 

The decomposition of all the functions in equation 
(8), except q, is carried out on e, but with q on 
e = x/~. The use of an alternate method of matched 
asymptotic expansions (MAE) could explain the pres- 
ence of the different exponents of ~ in expansions for 
q and for the other functions in equation (8). Let us 
describe briefly the scheme of the MAE method in our 
case. 

According to the MAE method the general solution 
can be constructed in a kind of a sum of inner and 
outer solutions minus their conterminous part [22]. 
The outer solutions in our case are the functions 'with 
a cover'. The inner solution is performed with the 
'stretched' variable ~ = r/e. In the first approach (on 
e) of internal expansion the simple solution is 
obtained: q is a harmonic function, and the rest of 
the functions are constant, which, as follows from an 
asymptotic matching principle, are equal to the outer 
solutions for the appropriate functions. Substituting 
them into the second order approach system of 
internal expansion we can find oscillations of the other 
functions ; they will be multiplied by e = e ~ in resulting 
solution. On the contrary, oscillations in the internal 
solution for q will be multiplied by e. 

Substituting expansions (8) into system (5) and 
gathering the terms with identical exponents of e we 
obtain two systems. One of them, for the functions 
with a cover, equation (9), has the form 

d/~ d ' ( /~-  1/3) 
pt-dt- = - 7 R + 2q(/£- 4/5) 

d/~ 4~ 
t p ~  = ~d( l - I~ /R~)-2(1-a2 /~) /~q  

0 = t2,dl,  

d~ 2 ( 1 _  1)if+20(1 + j) t P ~ t =  

dff~ 2if, 
tp ~ -  = - ~ - 2q/~ (9) 

where the functions ~,  ~2, ~Z~l, Pl and F,** depend on 
the functions with a cover, too. The oscillations in 
equation (5) are described by the following system 

a£ 
t~.~ = 2q(/~-4/5) 

t ( ~  = --2q(l --~2/~)/~ 

(~CI tZAl +fi t )  t (?~ = 

a g  
t ~  = 2q(1 + 6f) 

t==-  = -2p,q(2-~2~q) 
C'C 

a£  
t ~  = - 2 q ~  (10) 

where 

- 1 0 d ' / ~ - ~ ,  + p J + 2 q  2 (11) 

and A~ presents the second term in the expansion for 
Al: 

A, = d,(/£ ' ,G,~+e.4,.  (12) 

The equation for q is obtained from the expansion 
terms with the exponent ee in the fourth line of equa- 
tion (5). 

a q =  
t p ~  q I/~- l ( 2 -  ~ ) -  lOd'/~- ~, + p l  + 4qq. 

(13) 

The differential equation for q degenerates into an 
algebraic form in system (9). The value of the variable 
t is not small, whence d l =  0. This expression is an 
approximate integral of system (5). Differentiating 
this relation with respect to t, we obtain another 
approximate integral, 

d/f, 
p t ~ -  = 2(c, +czt]) = 0 (14) 

where 

7 
ci = - ~(1 -~ ~d)d ' (K-  1/3)/~ -I + g[d(/~- 1/3) 

(/~ ' - 1) + g ( / ~ -  1/3) ~ - ( F * *  - 4 ) /~ -  1. 2/3] 

c2 = ( 1 + rid) ( I~-  4/5) + [d(/~- 1/3) - 2/31 
(1 + ,9) + ~(/~- 1/3)p, (2 - ct2/?). 

Expressing 0 from equation (14), we get 
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q = - el/c~. (15) 

The relation (15) should replace the fourth line of 
system (9) for the smooth components. In this case the 
third line of system (9) is used for the determination of 
5. All other lines of system (9) coincides with systems 
(5) and (7). 

Consider now the solution of system (10). Differ- 
entiating partially the third equation of (10) with 
respect to ~, yields 

~2q &g~ 
t (16) 

0g2 ~ • 

The differential equation for the function A~ can be 
deduced by the differentiation of equation (6) with 
respect to ~. It has the form 

t dA1 = 2(c, +czq). (17) 
dr 

Applying the expansion on the powers of e, equa- 
tion (12), in this equation we obtain the following 
relation for the wave component of A~-function. 

t OA~ ~ -  = 2c2q. (18) 

The analysis shows, that c2 is negative. Denoting 

( 0  2 = - -  2C2 (19) 

we write a wave equation for q 

~2q +(02q  = 0. (20) 

The solution of equation (20) is a harmonic func- 
tion of ~ multiplied by an arbitrary function of t. 
Separating the variables with q = q ' ( t )q"(O,  we obtain 

q" = sin((0r ÷ ¢P0). 

Substituting then the expression for q : q =  
q'(t) sin((0~+~o0) into system (11), we can find out 
other wave components. For  the function/(, for exam- 
ple, it gives 

K = K'K" = - 2  q ' (R -4 /5 )  cos((0~+ 4~0) 
t(0 

so we conclude 

/(' = - 2  q ' ( / ~ - 4 / 5 )  , / £"  = c o s ( ( 0 ~ + q ~ 0 ) .  
t(0 

(21) 

Similarly the amplitudes and phases of other wave 
component can be found 

/~, = 2q ' (1-a2/~) /~,  /~" = cos((0~+q~o) (22) 
t(0 

= _2q ' (1  +G),  /~" = cos(~f+q~0) (23) 
tm 

a~ = 2p, q'(2--a2/~), d" = cos((0f+q~0) (24) 
t(0 

/~' = 2 q'E, /~" = cos((0f+qS0). (25) 
t(0 

It follows from equations (21)-(25), that ampli- 
tudes of all functions are proportional to the ampli- 
tude of the mass flow oscillation that all functions 
oscillate with the same frequency, and that the phases 
of oscillations for/( , /~,  0, ~ / ~ a r e  shifted to a quarter 
of a period from the phase of q. At long t the oscil- 
lations of all functions, besides q, are small. Exactly 
the same behavior of the functions is pointed out in 
the numerical results. 

The oscillations of functions in equation (10) are 
generated by the oscillation of the cross turbulent 
mass flux, q. At the same time, the oscillation of the 
flux is caused by the oscillation of function A j, see 
equation (18). The varying which occurs under the 
cosine law function ,,T~ may be referred to as amplitude 
one, since all the amplitudes are proportional to ,~. 
An appropriate second order differential equation for 
-'It can be obtained differentiating equation (18) with 
respect to 

c32 A I + ¢oz X ,  = _ ¢o2 f (  t~ ) 
0~ 2 t 2 

whence the dependence -41 on ~ and t can be written 
in the form 

,4, = - f ( t ) / t  2 + A] cos((0~+ ~b0) 

where ,4~ is a function dependent on t only ; different 
to the other functions with tilde, function A~ has a 
non-zero additive component, - f ( t ) / t  z. Since A1 = 0, 
at long evolution time t this component represents a 
very small wave-averaged value of A1, related to which 
oscillations take place. The amplitude of oscillation q' 
is connected to the amplitude of oscillation ,,1~ by the 
relation 

q' = . ~  t/(0. (26) 

Presenting q in equation (13) in the form of a prod- 
uct q = q'(t)q"(f) we find out an exponent in the power 
law for q'(t) from the ordinary differential equation 

t dq' p 1 ~ + p + 4 4 1  ' 

(27) 

At t--* oo the r.h.s, of equation (27) tends to a 
constant value. It determines a power law for the 
amplitude q' and, hence, for all other amplitudes. It 
will be considered in more detail at the analysis of the 
final stage of decay in the next part of this paper. 

For testing the relations obtained above it is necess- 
ary to solve numerically the full system of equations 
(5)-(7) and the system for the functions 'with a cover' 
equations (9) and (15). Preliminarily, in order to more 
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Fig. 1. The variation of function A~ in the experiment (sym- 
bols) and in the calculations (lines) : (a) in conditions of ref. 
[8] for air ((>) F = 0.0492, (I-q) F = 0.0441, (O) F = 0.0302, 
(+) F = 0.0236 ; (b) in conditions of ref. [9] for water (O) 
F =  0.149, ([]) F =  0.113, (O) F =  0.067, (+) F =  0.036. 
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Fig. 2. The variation of vertical convective correlation 
coefficient p'u':/p'u': in the experiment (symbols) and in the 
calculations (lines) : (a) in conditions of ref. [8] for air ; (b) 
in conditions of ref. [9] for water. For symbols, see Fig. 1. 

definitely recommend the model itself [1] to practical 
use we made comparisons with the experiments of 
refs. [9] and [8] in addition to published ones, [2]. 
Other experimental points (first points in each exper- 
imental set instead of third or fourth points in ref. [2]) 
were chosen as the initial conditions for calculation 
and some other functions were compared. 

Figure t plots the function A~(z). In both the cases 
a = 0.73 (Fig. l(a)) and a = 800 (Fig. l(b)) there is a 
close agreement between the model and the exper- 
iments. Function A~(z) oscillates with the same fre- 
quency, the wave averaged value _~ being really small 
and tending to zero. Figure 2 shows vertical convective 
flux correlation coefficient. In accordance with the 
model the phases of oscillations here and in the pre- 
vious sketch are noticeably shifted. The duration of 
the first period in calculation was probably higher 
than in the experiment due to aperiodic disturbance 
produced by the initial conditions. This disturbance 
can be practically avoided by starting the calculation 
from subsequent experimental points. Nevertheless, 

the degree of compatibility is rather good. Unfor- 
tunately, there are no experimental points for Nz* > 4 
in the air case. The variation of TKE in the calculation 
looks like that observed in experiments (Fig. 3). For 
the function F = g/p(eJe,dp/dx2) = OR, representing 
a mixing efficiency in the ocean, [6], predicted and 
experimental values are initially close, but after the 
onset of collapse some experimental points disagree 
(Fig. 4). It should be noted that for these points the 
inverse Froude number is not small enough. 

The comparison of the numerical solution of the 
two systems (5)-(7) and (9), (15) shows, that the 
second system really describes the averaged oscillation 
behavior of the first system with a very high accuracy. 
The subsequent parts of the paper contain detailed 
results of such a comparison for near and final time 
spans. 

Calculated according to equation (19) the period of 
oscillation, T = 2n/o9, coincides with the results of ref. 
[2] completely within the limits of such comparison 
accuracy (Fig. 5(a)). Here, and below initial con- 
ditions for the comparison with ref. [2] were taken 
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from the experimental points of  ref. [8] (Table 4, 
N = I . 1 6 , x / M =  11.9) in the air case ( a = 0 . 7 3 ,  
F - 2 . 4 x 1 0  -2 , M = 5 . 0 8 x 1 0  -2 , Re=7900) and 
of  ref. [9] (Table 2b, N = 0.24,x/M = 30) in the 
water case (or = 800, F = 3.7 x 10 -2, M = 3.81 x 10 2, 
Re = 9500). It is to be noted, that the cases of  water 
with a = 800 and air with a = 0.73 correspond to 
different values of  this period at t ~ ~ .  It causes the 
difference of  the K-value for these two cases. 
Oppositely, there is a small distinction of  these two 
cases at t ~ 1. 

The oscillating behavior of  the variation of  vertical 
mass flux together with the fast decay of  the amplitude 
q' was earlier pointed out in a recent DNS of the 
problem made in ref. [10]. The period of  the flux 
oscillation (see also ref. [17]) was found to be approxi- 
mately equal to one half of  the Brunt-V~iis~il~i period. 
It agrees well with the current results (see Fig. 2). To 
compare the period of  oscillations more definitely we 
also plot (calculated according to formula (19)) pre- 
dicted and experimental values of  T = 2r~/~o. As fol- 
lows from the analysis made above, the period of  

oscillations depends on wave averaged functions, but 
in Fig. 6 we compare the predicted values of  period 
with non averaged experimental points. In spite of  
this, the agreement looks rather good for air and for 
water (Fig. 6). 

The next step of  testing is a comparison of  oscil- 
lating components in numerical solutions with ana- 
lytical predictions. For  this purpose the numerical 
solution of  system (9), (15) should be subtracted from 
the numerical solution of  system (5)-(7) for appro- 
priate functions. The results for the differences f - f  
where i = K, R, ql, ~, E, d, A~ and q~ = q/e are shown 
in Fig. 7(a). To extract the wave components more 
precisely one has to adjust the initial conditions for 
the functions 'with a cover' ,  which differ from the 
initial conditions for system (5)-(7). After such adjust- 
ing, the wave components look more informative (Fig. 
7(b)). The oscillating components  represented in Fig. 
7(b) correspond to the following differences f - f a t  the 
initial point :  / ~ - K =  9 .0x  10 -3, /~ - -R  = 1 . 0 ×  10 - l ,  
~ - 8 = 0 . 1 6 2 ,  / ~ - E = - - 2 . 7 × 1 0  -4 , d - d = l . 2 9 x  
10 -2" 
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The phases of oscillations of E and 9 are opposite 
(Fig. 7(b)). A reduction of one of them causes an 
increase of the other one. The oscillations of K are in 
phase with the oscillations of E, but  are more sharp. 
The same picture was observed in numerical cal- 
culations of ref. [2] and in a number  of works based 
on the DNS application (see ref. [17]). 

There are two positions in which the wave com- 
ponent  of the turbulent mass flux, q, is equal to zero, 
we shall name them A and B. In position A the func- 
tions ~,/~, aThave a maximum and g , / ~  and A1 have 
a minimum, sign of convective mass flux reverts from 
plus (upwards) to minus (downwards). This situation 
occurs after lifting up of more easy turbulent patches 
and corresponds to a more significant density strati- 
fication, as it follows from the N number.  In position 
A velocity fluctuations are partially extinguished. In 
position B the wave component  of mass flux, #, chan- 
ges the sign from negative to positive. After lowering 
down more easy turbulent patches the density field 

becomes more uniform, the density fluctuations are 
extinguished, while the velocity fluctuations grow. 

Having extracted the oscillations, it is possible then 
to analyze their amplitudes. Figure 8 compares the 
amplitudes taken from the numerical solution of the 
full system (5) with the amplitudes calculated from 
smoothed system (9), (15) together with equations 
(27) and (21)-(26). Extracting the small oscillating 
components can lead to some loss of accuracy. We 
see, for instance, that the amplitude for aT (which is 
especially small) begins to differ from their predictions 
after a while (Fig. 8a). To extract the wave com- 
ponents more precisely it is necessary to adjust the 
initial conditions for f more accurately. Taking this 
into account the agreement in Fig. 8 appears sat- 
isfactory for all the functions besides R. The large 
difference between the analytically predicted and 
numerically calculated amplitude of the /~-function 
near the axial coordinate ~ = 20 is caused by one 
principal reason. Just near this position the sign of 
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_R' in equation (22), is changed, so we can discuss 
phenomenon of internal wave overturning. It is clear 
that near the point of  zero K' the procedure of asymp- 
totic expansion applied in this section fails and should 
be corrected to include dispersion into consideration. 

This can be proven to be true, by comparison of 
oscillation periods for the various functions with their 
analytical predicted (by equation (19)) values. As it is 
easy to see, periods of oscillations for all functions 
except R coincide with each other everywhere, but  
periods for R begin to differ from others near the point 
of zero/~',  Fig. 5(b). This phenomenon appears to be 
important  because it can create other wave harmonics 
in the stream and must be related with increasing 
dissipation. Finally, we should note that original sys- 
tem (5) is stiff, so it is hard to solve it correctly over 
long time intervals. At the same time system (9) is not  
stiff and is much more convenient for calculations at 
very long time intervals. 

5. CONCLUSIONS 

For small inverse Froude numbers F = NM/U the 
detailed analysis was made of the model in refs. [1, 2], 
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Fig. 8. Comparison of analytically predicted and numerically 
obtained amplitudes for the various functions of the model. 
Lines--predicted according to equations (21) (26), sym- 

bols-numerical : (a) for ~',/( ' ,  ~, E' ; (b) for A~,/~', q'. 

describing an evolution of homogeneous turbulence 
in stably stratified media. The difference in time scales 
permits one to carry the mathematical separation of 
buoyancy and viscous dissipation processes. The 
infinitesimal of ~ = F 2 is used to construct approxi- 
mate analytical solutions. It is quite allowable for the 
practically important  cases of density stratification in 
salt sea-water and temperature stratification in atmo- 
spheric air (e ~ 10-3). 

Applying a small parameter method in the form of 
equation (8) to the original system of equations (5), 
it manages to separate the problem into the systems 
of equations (9), (15) for wave averaged functions, 
and system (10) for oscillating components.  The form 
of the method used is rather common and can be 
repeated in other models describing the same or simi- 
lar problem. 

Due to intensive mixing behind the grid, turbulent 
patches appear in flow regions with different density. 
At small inverse Froude numbers the resulting force 
acting on them linearly depends on the displacement 
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of  the patch from the equilibrium state. The equi- 
librium shown is defined by the relation AI = 0 and 
relation (15) for the wave averaged convective flux q. 
The expression A~ = 0 sets a mutual balance of  squa- 
red density and vertical velocity fluctuations. 

The presence of  returning force proport ional  to the 
displacement leads to arising of harmonic oscillation. 
The function A ~ ( z ) = A l ( t ) + e A l ( ¢ , t )  oscillates 
about  its average nearly zero value. Oscillations of  At 
initiate oscillations of  the turbulent vertical mass flux, 
shifted in phase on 7t/2. It forces all other functions in 
equation (5) to oscillate with the same frequency. 

The variance of  oscillation amplitude q' is described 
by the differential equation (27). Amplitudes of  the 
other functions and their places are related to the 
amplitude and the phase of  q-fluctuations by the 
algebraic formulas (21)-(26). For  the oscillating com- 
ponent of  vertical mass flux, ~7, the wave equation (20) 
is deduced. The frequency of  oscillations in equation 
(20) varies in accordance to relation (19). 

The value of  the mean flux ~ is rather small com- 
pared to the peak value of  mass flux oscillation, but it 
can form a radical difference from an isotropic media 
case during long interval. 
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